A Disaster Recovery strategy includes policies, tools, and processes for recovery of data and restoration of systems in the event of a disruption. The cause of disruption could be natural, like earthquakes/floods, or man-made like power outages, hardware failures, terror attacks or cybercrimes. The aim of Disaster Recovery(DR) is to enable rapid recovery from the disaster to minimize data loss, the extent of damage, and disruption to the business. DR is often confused with Business Continuity Planning(BCP). While BCP ensures restoration of the entire business, DR is a subset of that, with a focus on IT infrastructure, applications, and data.

IT disasters come at the cost of lost revenue, tarnished brand image, lowered customer confidence and even legal issues relating to data privacy and compliance. The impact can be so debilitating that some companies never fully recover from it. With the average cost of IT downtime running to thousands of dollars per minute, it goes without saying that an enterprise-grade disaster recovery strategy is a must-have.

Why do companies neglect this need?

In spite of the obvious consequences of a disaster, many organizations shy away from investing in a DR strategy due to the associated expenditure. Without a clear ROI insight, these organizations decide to risk the vulnerability to catastrophic disruptions. They instead make do with just data backup plans or secure only some of the most critical elements of their IT landscape.

Why is Disaster Recovery different today?

The ripple effects of modern digital infrastructure have forced an evolution in DR strategies. Traditional Disaster Recovery methods are being overhauled to cater to the new hybrid IT infrastructure environment. Some influencing factors:

Cloud computing

The modern IT Landscape

Infrastructure – Today’s IT environment is distributed between on-premise, colocation facilities, public/private cloud, as-a-service offerings and edge locations. Traditional data centers are losing their prominence and are having to share their monopoly with these modern technologies. This trend has significant advantages such as reduced CapEx in establishing data centers, reduced latency because of data being closer to the user, and high dynamic scalability.

Data – Adding to the complexity of modern digital infrastructure is the exponential growth in data from varied sources and of disparate types like big data, mobile data, streaming content, data from the cloud, social media, edge locations, IoT, to name a few.

Applications – The need for agility has triggered the shift away from monolith applications towards microservices that typically use containers to provide their execution environment. Containers are ephemeral and so scale, shrink, disappear or move between nodes based on demand.

While innovation in IT helps digital transformation in unimaginable ways, it also makes it that much harder for IT teams to formulate a disaster recovery strategy for today’s IT landscape that is distributed, mobile, elastic and transient.

Cybercrimes

Cybercrimes are becoming increasingly prevalent and are a big threat to organizations. Modern technologies fuel increasing sophistication in malware and ransomware. As their complexity increases, they are becoming harder to even detect while they lie low and do their harm quietly inside the environment. By the time they are detected, the damage is done and it’s too late. DR strategies are also constantly challenged by the lucrative underworld of ransomware.

Solution Strategies for Disaster Recovery

On-Premise DR: This is the traditional option that translates to heavy upfront investments towards the facility, securing the facility, infrastructure including the network connectivity/firewalls/load balancers, resources to scale as needed, manpower, test drills, ongoing management and maintenance, software licensing costs, periodic upgrades for ongoing compatibility with the production environment and much more.

A comprehensive DR strategy involves piecing together several pieces of a complex puzzle. Due to the staggering costs and time involved in provisioning and managing infra for the duplicate storage and compute, companies are asking themselves if it is really worth the investment, and are starting to explore more OpEx based solutions. And, they are discovering that the cloud may be the answer to this challenge of evolving infra, offering cost-effective top-notch resiliency.

Cloud-based DR: The easy availability of public cloud infrastructure & services, with affordable monthly subscription plans and pay per use rates, has caused an organic switch to the cloud for storage, infra and as a Service(aaS) needs. To complement this, replication techniques have also evolved to enable cloud replication. With backup on the cloud, the recovery environment needs to be paid for only when used in the event of a disaster!

Since maintaining the DR site is the vendor’s responsibility, it reduces the complexity in managing the DR site and the associated operating expenses as well. Most DR requirements are intrinsically built into cloud solutions: redundancy, advanced networks, bandwidth, scalability, security & compliance. These can be availed on demand, as necessitated by the environment and recovery objectives. These features have made it feasible for even small businesses to acquire DR capabilities.

Disaster Recovery-as-a-Service(DRaaS) which is fast gaining popularity, is a DR offering on the cloud, where the vendor manages the replication, failover and failback mechanisms as needed for recovery, based on an SLA driven service contract.

On the flip side, as cloud adoption becomes more and more prevalent, there are also signs of a reverse drain back to on-premise! Over time, customers are noticing that they are bombarded by hefty cloud usage bills, way more than what they had bargained for. There is a steep learning curve in assimilating the nuances of new cloud technologies and the innumerable options they offer. It is critical for organizations to clearly evaluate their needs, narrow down on reliable vendors with mature offerings, understand their feature set and billing nitty-gritties and finalize the best fit for their recovery goals. So, it is Cloud, but with Caution!

Integrating DR with the Application: Frank Jablonski, VP of Global Marketing, SIOS Technology Corp predicts that applications will soon have Disaster Recovery architected into their core, as a value-add. Cloud-native implementations will leverage the resiliency features of the cloud to deliver this value.

The Proactive Approach

Needless to say, investing in a proactive approach for disaster prevention will help mitigate the chances of a disaster in the first place. One sure-fire way to optimize IT infrastructure performance, prevent certain types of disasters and enhance business service continuity is to use AI-augmented ITOps platforms to manage the IT environment. GAVS’ AIOps platform, Zero Incident FrameworkTM(ZIF) has modules powered by Advanced Machine Learning to Discover, Monitor, Analyze, Predict, and Remediate, helping organizations drive towards a Zero Incident EnterpriseTM. For more information, please visit the ZIF website.