
Reducing costs 
by switching to  

AWS Fargate based 
serverless deployment

An early-stage cloud management 
product improves security and availability

while becoming auto-scalable 

Serverless Architecture

Case Study



Our client wanted to implement a completely scalable, 
containerized and cost optimized architecture for their cloud 
management product. GS Lab created an auto-scalable, 
immutable and highly available architecture using AWS 
Fargate which resulted in cost reductions of 85% per   
month. Our solution also made the product more secure 
while giving our customer the ability to scale up or scale 
down resources based on their requirements. 

Executive Summary

Serverless Architecture



Our customer had developed an early stage cloud management product. 
Just like any other early stage product, there were lots of unknowns 
about immediate adoption as well as the speed at which adoption will 
shoot up. The product was built on AWS with a typical EC2 setup. Certain 
assumptions were made during capacity planning. However a lot of 
uncertainties are involved when it comes to early stage products and 
their adoption. 

Overview

The customer’s product had a long sales pipeline. There was a possibility 
of huge surge in traffic but at the same time there was a greater risk of 
clear wastage of AWS resources if many deals in the pipeline failed to 
materialize. The product team wanted availability, scalability and security 
without inefficient resource utilization. 

Serverless architecture was one of the best solutions in this scenario. But 
AWS Lambda works on a function-as-a-service model. This would have 
meant restructuring a lot of components. 

Challenge

Technical problem definition:
We observed the following issues with the AWS deployment:
 
Front end server and middleware server were highly underutilized (CPU 
utilization less than 7%). They were large M5s costing approx $500 each 
month.

1. Though load balancers were used for the servers, the auto-scaling was 
     not configured. Hence there always was a single instance running 
     behind the LBs.
2.  The  product was deployed in a single AZ.

Serverless Architecture



Serverless Architecture

Possible solutions
Front end and back end servers had very low CPU utilization and were 
good candidates for cost optimization.

There were three possible solutions:
1. Downgrading instances.
2. Use of reserved instances.
3. Containerization of the deployment using Fargate where CPU and 
    memory configurations can be changed at any time. 

Estimating the usage was extremely difficult at the point of development. 
The features in the application would increase in near future which 
could boost demand. Hence the third option seemed to be a more apt 
solution for the clients needs.

Solution

Original deployment

IGW

Public Subnet

AZ: US-east-1a

Front-
end 
LB

Front-
end 

Server

Middle 
Layer 
Back-
end

COT 
Back-
end

Middle-
ware 

LB

COT 
LB

Mongo 
DB

Post-
greSQL

NAT 
Gate-
way

Private Subnet



Serverless Architecture

GS Lab made the following changes to the architecture to take care of 
the issues discussed:

1. The front end and middleware was replaced using Fargate deployment 
     where auto-scaling spanned across two AZs. 
2. The ECS containers were deployed in the application specific VPC in 
     the private subnet.
3. Classic load balancers were replaced with application load balancers 
     in the public subnet. 
4. ECR (Elastic Container Registry) was used to store the container image. 
    Fargate pulls the image from ECR at the time of deployment.
5. Container metrics and logs were monitored through CloudWatch.

Availability Zone us-east-1b

Private Subnet

Public Subnet

Public Subnet

Private Subnet

Availability Zone us-east-1a

Post-
greSQL 

DB

COT LB
COT 

Back-
end EC2

Mongo 
Db

Fron-
tend 
ALB

Front-
end ECS 

Task 
Fargate

Middle-
ware 
ECS 
Task 

Fargate

Middle-
ware 
ECS 
Task 

Fargate

Front-
end ECS 

Task 
Fargate

Auto 
Scaling

Auto 
Scaling

Back-
end 
ALB

IGW

AWS
VPC

Our solution



Serverless Architecture

What is AWS Fargate

AWS Fargate is a serverless compute engine for containers that works with both 

Amazon Elastic Container Service (ECS) and Amazon Elastic Kubernetes Service (EKS). 

Fargate removes the need to provision & manage servers while allowing you to 

specify & pay for resources based on usage per application. It also improves security 

through application isolation by design. Fargate runs each task or pod in its own 

kernel providing the tasks and the pods their own isolated compute environment. 

This enables your application to have workload isolation and improved security by 

design. It works on pay per use pricing.  Fargate for containers is what Lambda 

is to functions. Lambda is FaaS (function as a service), whereas Fargate is CaaS 

(container as a service).

Server pricing comparison 

Price Per Hour Hours Days No Of 
Instances Total Price

M5 Large EC2 
instance 0.086 24 30 10 619.2

Total Cost 
Per Month $619.2

A] Old deployment cost

Allocation Price Per 
Hour Hours Days No Of 

Instances Total Price

CPU 0.25 CPU 0.04048 24 30 10 72.864

Memory 1 GB 0.004445 24 30 10 32.004

Total Cost Per Month $104.868

B] New serverless deployment using Fargate

Numbers are indicative in nature 

Numbers are indicative in nature 



Serverless Architecture

1. The consolidated cost for these two servers reduced by a whopping 
     85% per month.

2. We containerized the deployment with auto scaling and high availability 
    using two AZs. If the workload increases or a task goes down for some 
    reason, Fargate launches a new task in a different AZ. 

3. We created an immutable deployment that is  more secure as the 
     underlying infrastructure is not directly accessible.

4. The memory and CPU allocations can be changed anytime depending 
     on the requirements.

Impact

Reduced
Costs

Improved
Scalability

Improved 
security



Great Software Laboratory (GS Lab) has been the technology partner of choice 
to 100+ organizations across North America, Europe and Asia-Pacific for over 16 
years. Leveraging our expertise in 130+ tools & technologies, we have created 
300+ ‘first-of-its-kind’ solutions to real-world problems. Our ‘Beyond code’ 
philosophy ensures that we not only push boundaries of existing technologies 
but also try out newer problem solving approaches to keep our customers one 
step ahead of their competitors. Our global team of 1200+ employees is adept 
at creating ‘real value’ at each stage of the customer growth journey, right from 
proof-of-concepts to completely scaled up products. For more information about 
our solutions & offerings, please visit www.gslab.com

Copyright©2020 Great Software Laboratory. All rights reserved. No part of this document may 
be reproduced, stored in a retrieval system, transmitted in any form or by any means,electronic, 
mechanical, photocopying, recording, or otherwise, without the express written permission from 
Great Software Laboratory. The information contained herein is subject to change without notice. 
All other trademarks mentioned herein are the property of their respective owners.

www.gslab.com


