
Case Study

Reducing costs by 
40% and improving 

scalability by moving to 
a Kubernetes environment

Containerization

A WAN management product company 
migrates from a virtual machine based

 microservice environment to Kubernetes



Containerization

In today’s modern tech stack, the move from 
Virtual Machines (VMs) to Containers is an 
obvious first step. It is crucial to adopt the right 
strategies while moving towards microservice 
based architectures. This success story covers 
one such modernization from VMs to K8s. 

Executive Summary

Containerization



Containerization

Our customer offers a software-defined solution for managing and 
configuring WANs using a centralized cloud-based interface. They offer a 
hybrid solution with minimal hardware setup on the customer premises. 
Most of the infrastructure is hosted on AWS cloud.

As their user base scaled up, they faced significant challenges in handling, 
sustaining and expanding VM instances. Hence, they decided to migrate 
their VM-based microservices to Docker and K8s based Architecture. 

GS Lab’s rich experience in the networking & cloud domains, helped the 
customer to prepare, strategize and mitigate the risks of migrating the 
large legacy VMs. We successfully migrated five clusters in one year, each 
consisting of more than 25 microservices hosted by more than 50 AWS 
instances.

Rapid growth in user base in different parts of world led to extensive 
growth of cloud instances. It was hard to scale with the existing set up. 
These were some of the most prominent challenges we faced:

Challenge

Overview

1. Manual provisioning of infrastructure 

Manual provisioning introduced human errors. Manual ad-hoc changes 
over time, led to differences in intermediate environments. This in turn 
caused unexpected issues and failed deployments. Bringing up a new 
cluster was a nightmare due to the lack of  a fully automated system for 
handling infrastructure, provisioning and configuration management.



Containerization

2. High infrastructure cost  

There were many more AWS instances on a cluster than the number 
of microservices. As the number of users increased, the cost of buying 
and managing these instances spiraled out of control. There were two 
primary reasons for high infrastructure costs:

• AWS instance count: A high number of unmanaged instances led 
to high costs for the customer. This also increased the cost spent on 
human capital maintaining these instances.

• Underutilization of instances: The microservices were not utilizing 
the AWS instances optimally a which led to the customer paying extra 
for unutilized resources.

3. High downtime 

It took hours to deploy the product. The rollback process was complicated 
and time-consuming, which added to even loner downtimes.

4. Tiresome manual scaling (elasticity)

Autoscaling (horizontal/vertical) was not implemented in the solution. 
This led to manual scaling of instances which was tedious and unnecessary. 
Controller services were needed to grow and shrink the solution based 
on auto configurable parameters.

GS Lab has a rich history of helping networking product companies in 
developing SDN, SD-WAN, and NFV based high-performing, scalable 
solutions. Our networking, cloud migration and DevOps experience 
helped our customer in creating a much simpler and easy-to-use solution.



Containerization

Considering the various challenges faced by our customer, GS Lab 
proposed and implemented the following solution:

VPC

AWS

K8S VPC

Oregon

ING

Zone C Config
ConfigNodesMaster

Zone B Config
ConfigNodesMaster

Zone A Config
ConfigNodesMaster

Filebeat

ING K-Proxy Kubelet

M
on

ito
ri

ng
Pr

od

Deploy

POD POD

Logging

POD

Service
Monitor

Dae-
monset

Node 
Exporter

Pro-
metheus POD

Config
ConfigEFK

Prometheus

AWS Cloud

Solution architecture

AWS

POD

App
Con-

tainer

Filebeat



Containerization

Our solution covered the following requirements:

Dockerizing the individual applications: We wrote Docker files for 
all  microservices. Services were installed in docker images as Debian 
packages using APT.

Bringing up K8s clusters: We used Kubernetes Operations (Kops) to 
bring the K8s cluster into AWS cloud. Kops is an open-source project that 
enables fast and swift setup of Kubernetes clusters. 

Application connection: We used K8s service-types such as NodePort, 
LoadBalancer, ExternalName and ClusterIP to connect the applications 
internally and to the database.

K8s networking: We used Weave networking solutions in our 
environment. Using Weave, we created a mesh overlay network between 
each of the nodes in the cluster and enabled versatile routing between 
the participants.

Logging and monitoring: We implemented Sidecar utility containers 
with individual applications that facilitate log collection and monitoring. 
Filebeat was used as a log shipper for a centralized Elasticsearch cluster. 
Prometheus Operator was used to collect service metrics which was 
federated to a centralized Prometheus server.

Autoscaling: We integrated two types of autoscaling; Horizontal 
Pod Autoscaler (HPA) and Cluster Autoscaler (node autoscaling). The 
horizontal pod autoscaler (HPA) automatically scales the number of Pods 
deployed based on observed CPU or Memory consumption. The Cluster 
autoscaler dynamically scales the number of nodes to match current 
cluster utilization and controls the cost of operating Kubernetes clusters 
on a cloud provider platform.

Deployment Framework: We built a custom framework using docker 
and Ansible. We used shell scripts to dockerize and deploy applications.



Containerization

Elasticsearch
data node 1

Elasticsearch
data node 2

Elasticsearch
idata node 3

Elasticsearch
idata node 4

Elasticsearch
ingest node 1

Elasticsearch
ingest node 2

Kibana

Kubernetes
Cluster

MongoDb
Cluster

Kafka
Cluster

Redis
Cluster

Application
instances

Filebeat as a log shipper

Elasticsearch Cluster

In
ge

st
 p

ip
el

in
e

Prometheus HA

Alertmanager
1

Availability 
Zone A

Prometheus
+

Alertmanager
2

Availability 
Zone B

Prometheus
+

Mongodb
Exporter

Redis
Exporter

Elasticsearch
Exporter

Node
Exporter

Kafka
Exporter

Nginx
Exporter

Kubernetes
cluster with 
Prometheus

operator

Prometheus Federation



Containerization

Once the solution was implemented, our customer's challenges plunged 
dramatically.

Impact

Improved 
flexibility

1. Reduced AWS cost: It only takes seven nodes to manage 30+ 
microservices. 50+ AWS instances hosting these microservices 
dropped down to only 10+ AWS instances. 

2. Decreased downtime: We have achieved zero downtime using Rolling 
Update for kubernetes. The system goes down only during database 
updates, which happens rarely.

3. Auto scaling: Auto-scaling automatically increases or decreases pod 
or node counts depending on application load.

4. Reduced deployment time: Infrastructure provisioning, deployment, 
and configuration management of applications occurs with just one 
click. Additionally, multi-region deployments are seamless and hassle-
free. 

5. Improved monitoring and logging: Monitoring & logging is now 
enhanced with more detailed and meaningful dashboards on Grafana 
and Kibana.

40% Reduction 
in costs

Improved
monitoring



Containerization

Great Software Laboratory (GS Lab) has been the technology partner of choice 
to 100+ organizations across North America, Europe and Asia-Pacific for over 17 
years. Leveraging our expertise in 130+ tools & technologies, we have created 
300+ ‘first-of-its-kind’ solutions to real-world problems. Our ‘Beyond code’ 
philosophy ensures that we not only push boundaries of existing technologies 
but also try out newer problem solving approaches to keep our customers one 
step ahead of their competitors. Our global team of 1200+ employees is adept 
at creating ‘real value’ at each stage of the customer growth journey, right from 
proof-of-concepts to completely scaled up products. For more information about 
our solutions & offerings, please visit www.gslab.com

Copyright©2021 Great Software Laboratory. All rights reserved. No part of this document may 
be reproduced, stored in a retrieval system, transmitted in any form or by any means,electronic, 
mechanical, photocopying, recording, or otherwise, without the express written permission from 
Great Software Laboratory. The information contained herein is subject to change without notice. 
All other trademarks mentioned herein are the property of their respective owners.

www.gslab.com


