
Improving
scalability &

availability using
serverless architecture

A healthcare technology startup
reduces infrastructural costs for their

platform by using next generation architecture

Serverless Architecture

Case Study

Next generation challenges require next generation solutions.
A healthcare technology startup wanted to create a highly
scalable data gathering mechanism which could leverage
the power of data science and machine learning to create
predictive insights. Great Software Laboratory created a robust
serverless architecture which not only reduced the resources
required to develop and maintain the product, but it also gave
our client the benefit of having a highly modular and flexible
product which conformed to regional regulatory and data
protection mechanisms with minimal effort.

Executive Summary

Serverless Architecture

Our customer is a healthcare technology startup who has created a
healthcare app that leverages machine learning models to diagnose
health issues. The product engineering of this solution had two aspects.

1. The data related to health parameters had to be collected globally. We
developed an app to collect this data. The features of the data and meta
data were to be extracted and the ML model would use it for training.
This activity continues to happen on a large scale across the globe. Other
apps from the ecosystem would also need to plug into the platform to
access the data.

2. The final product showed the result to the user. This app with built
in ML models, would need to respond really fast under all scenarios.
Customers request health checks randomly all around the world and
there are no fixed patterns to identify this demand.

Overview

Due to the complexity and unique requirements of the product, the
backend architecture had multiple facets.

1. Modern architecture
The architecture had to be modular and service based for the entire
pipeline which included data gathering, processing, feature engineering,
and the prediction engine. The product and services had to be accessible
across the globe at any point of time.

Challenge

2. Quick scalability
The surge in traffic is unpredictable. Keeping infrastructure optimized
for the peak would be mean heavy infrastructure costs. However, quick
results were equally important for the user.

3. Continuous availability
The tools and services had to remain up and running at all times.
This would require a robust architecture which could handle loads
continuously.

Serverless Architecture

Serverless Architecture

4. Integration
Individual components of the solution were to be created using multiple
best suited languages and tools. These disparate tools had to work
together in confluence. We knew right from beginning that we would
need an interdisciplinary team with expertise in multiple languages.

5. Data protection
The application would handle and process a lot of personal health data.
It was crucial to adhere to local, regional and global regulatory & law
enforcement frameworks to maintain & protect the data and privacy of
individuals.

6. Costs
 While catering to all these needs, like every startup, it was very important
not to waste resources in endless experimentation. We had to develop
the optimal solution with minimal investment.

Considering these complex requirements,
GS Lab decided to use AWS serverless
components, microservices and SAM
(serverless application architecture), for
the product. Even though this architecture
had been around for a couple of years,
not many had used it in real products.

Solution

We used the following AWS
components:

• The lambda function for almost all
 components (Lambda versioning is
 powerful when we have ML models
 as lambda).
• Kinesis service for feature extraction
 of the health data.
• AWS cloud formation templates
• S3 for secure storage
• RDS PostgreSQL for database needs.

Serverless computing is
an execution model where
the cloud provider runs and
manages allocation of servers
and resources by itself. In an
AWS environment, it uses the
Lambda function. It is completely
dynamic. The resources are
called upon as needed and one
does not have to pre-purchase
or allocate resources. The pricing
model is based on actual usage
making it a ‘pay per use’ model.
Serverless computing simplifies
scaling, capacity planning and
maintenance while reducing the
burden on ops.

Serverless Architecture

GS Lab decoupled ML model training & ML infused product architectures.
This not only saved costs but also complied with data related government
regulations.

Health Data
Collection App

Geography Centric Data Collection Final Product

Health
Check-up

App

Data Stored In
Local Geography

Feature
Extraction

Central Data Storage &
Centralized ML model Training

Feature
Extraction

ML Models

Solution architecture

Challenges faced by early adopters

• Every new technology has a learning curve when it comes to finding
 the optimal approach. The development team needs to invest time
 to understand a new technology when the broader community has not
 adopted it en masse.
• We also faced challenges with language specific object/data initialization.
 A lot of experimentation and deep troubleshooting was required to solve
 issues such as these were not encountered by any previous adopter.

• We also factored in the technical limitations of the Lambda service when
 it comes to deploying large artifacts during the design phase.

1. Traditional ops would have needed four DevOps engineers. The newer
 structure needs only one. This indicates how ops-light our solution is.

2. Serverless architecture resulted in approximately 40% lesser
 infrastructure costs with medium resource utilization. Higher savings
 can be achieved for higher loads.

3. We created a completely scalable product which not only had high
 availability, but also generated quick results for the user.

4. Our serverless architecture proved to be so efficient that we decided
 to make it extensible and implement it across the platform which
 allowed other apps/tools to plug in to the system.

5. Our solution made it very easy for the client to adhere to all regional
 and global data protection & other regulatory frameworks.
 Compliance to all legal requirements needed minimal effort due to the
 modular nature of the architecture.

6. The application used best-in-class tools and languages to develop
 individual components. Serverless architecture made it possible to
 integrate these disparate systems to work together seamlessly.

7. We also realized other savings around DevOps as patches or upgrades
 don’t need to e applied to EC2 machines.

Impact

Serverless Architecture

Reduced
Costs

Improved
Scalability

Architecture
Extended To

Platform

Great Software Laboratory (GS Lab) has been the technology partner of choice
to 100+ organizations across North America, Europe and Asia-Pacific for over 16
years. Leveraging our expertise in 130+ tools & technologies, we have created
300+ ‘first-of-its-kind’ solutions to real-world problems. Our ‘Beyond code’
philosophy ensures that we not only push boundaries of existing technologies
but also try out newer problem solving approaches to keep our customers one
step ahead of their competitors. Our global team of 1200+ employees is adept
at creating ‘real value’ at each stage of the customer growth journey, right from
proof-of-concepts to completely scaled up products. For more information about
our solutions & offerings, please visit www.gslab.com

Copyright©2020 Great Software Laboratory. All rights reserved. No part of this document may
be reproduced, stored in a retrieval system, transmitted in any form or by any means,electronic,
mechanical, photocopying, recording, or otherwise, without the express written permission from
Great Software Laboratory. The information contained herein is subject to change without notice.
All other trademarks mentioned herein are the property of their respective owners.

www.gslab.com

